The Synthesis of 2,3,4,5,6-pentafluorobenzene Diazonium Tetrafluoroborate and its Possible Function as a P-type Dopant=

Student Name: 
Alexandra Li
UCD Department: 
Chemistry
UCD Mentor: 
Dr. Mark Mascal

Recently, organic semiconductors have gained more attention as an alternative to inorganic semiconductors. Organic electronics are lighter, more flexible, and more low-cost than inorganic ones and have many possible applications, including thinner OLEDs (Organic Light Emitting Diodes) and cheaper solar cells. Organic polymers can become more efficient with the help of a more efficient dopant, an agent that allows a semiconductor to conduct current by either adding an isolated electron (n-type) or creating a hole in a sea of electrons (p-type). The goal of the project was to create an electrophilic diazonium salt in order to test whether it will be a more efficient p-type dopant than standard ones. A new procedure to make the diazonium salt was created, which led to successful synthesis of the compound, PFBDT. Critical data of the general chemical properties of PFBDT was provided to chemical engineers, who will perform further analysis of the compound’s role as a dopant.